笔下文学

手机浏览器扫描二维码访问

第14章 一不小心站在了技术发展的最前沿(第1页)

2014年,人工智能领域正处于深度学习的快速发展时期,但在训练深层神经网络时,仍存在一些无法绕过的核心难题,其中“梯度消失”

和“梯度爆炸”

问题尤其突出。

当马库斯和林枫的对话逐渐转向这些人工智能瓶颈时,他们自然聊到了这个话题。

对于人工智能涉及到的梯度消失和梯度爆炸这个问题,对于前世就从事人工智能方面工作的林枫来说,他自然是不陌生。

梯度消失和梯度爆炸是神经网络训练中常见的问题。

了解梯度消失和梯度爆炸首先要了解神经网络。

简单说,神经网络是一种模仿人脑工作原理的计算模型。

它由很多“神经元”

组成,这些神经元分成多层,数据会从一层传到另一层,最终得到一个结果。

训练神经网络的过程就是不断调整这些神经元之间的“连接强度”

,让网络的输出越来越接近我们想要的结果。

为了调整神经网络中的这些连接强度,我们需要用到一种叫“梯度”

的东西。

简单来说,梯度就是用来指引我们“往哪里走”

的方向,就像你爬山时要知道往哪边是上坡、哪边是下坡。

我们通过“梯度”

来知道哪些参数需要调整,从而让网络的表现变得更好。

那“梯度消失”

和“梯度爆炸”

又是什么呢?假设你在玩一个滑滑梯,当你站在滑梯的最高处,往下滑时,你能很快感受到速度在增加,因为坡度很大。

但是,如果滑到快要到底部的地方,坡度变得很小,你几乎就感觉不到滑动的速度了。

这里的“坡度”

就像是“梯度”

——当坡度变小,滑动的速度也变小。

在神经网络中,类似的事情也会发生。

如果我们给网络很多层,它们之间的梯度会越来越小,传到前面几层时,梯度几乎“消失”

了。

这就是“梯度消失”

问题。

梯度太小,无法有效调整那些神经元的连接强度,网络的训练就会变得非常困难。

热门小说推荐
官路扶摇

官路扶摇

前世被当副镇长的老婆离婚后,崔向东愤怒下铸成了大错,悔恨终生!几十年后,他却莫名重回到了这个最重要的时刻!他再次面对要和他离婚的副镇长老婆,这次,他会怎么做?...

直上青云

直上青云

性格嚣张的林飞扬走马上任镇委书记当天就得罪了顶头上司,让大领导颜面无存,差点被就地免职,且看这个嚣张到骨子里的家伙如何凭借孙子兵法和三十六计勇闯重重危机,智破层层陷阱,在官场上混得风生水起,扶摇直上…...

官路红途

官路红途

意外撞见女上司在办公室和陌生男人勾勾搭搭,齐涛偷偷拍下照片,依靠这个底牌,他一路逆袭,而女领导对他也由最开始的恨,逐渐改变了态度...

为夫体弱多病

为夫体弱多病

专栏古耽预收微臣诚惶诚恐求个收藏容棠看过一本书。书里的反派宿怀璟是天之骄子,美强惨的典型代表,复仇升级流高智商反派人设,可惜人物崩坏,不得善终。结果一朝穿越,容棠成了文中同名同姓早死的病秧...

官狱

官狱

官场,是利益的牢笼胜利者,在人间炼狱失败者,在人间监狱。爱与恨,恩与怨,熙熙攘攘,皆为利往...

官途:权力巅峰

官途:权力巅峰

官场如战场,尔虞我诈,勾心斗角,可陆浩时刻谨记,做官就要做个好官,要有两颗心,一颗善心,一颗责任心。且看陆浩一个最偏远乡镇的基层公务员,如何在没有硝烟的权利游戏里一路绿灯,两袖清风,不畏权贵,官运亨通。...

每日热搜小说推荐